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Abstract. Rate constants for vacancy migration in a Lennard-Jones crystal are 
evaluated within the frame of the reactive flux correlation fundion f o d m  by 
molecular dynamics simulation. In our calculation a key role is played by a hole- 
nomic constraint acting on the reaction coordinate. The definition of a suitable 
reaction coordinate is a subtlematter a5 becomes evident when using our techniques. 
We show how the ambiguities in the definition of the reaction coordinate can be 
circumvented. Our results are two orders of magnitude more precise than previous 
‘exact’ calculations. 

1. Introduction 

Diffusion in solids is due essentially to rare hopping events; usually these events are 
made possible by the presence of defects. In this article we will deal essentially with 
methodological aspects of these phenomena and will focus our attention particularly 
on the vacancy-atom interchange in a simple model consisting of a perfect Lennard- 
Jones crystal and one missing atom or vacancy. The reactive flux correlation function 
formalism represents an adequate framework to study by computer simulation the 
dynamics of activated processes taking place in condensed matter. This formalism 
has been introduced by Yamamoto [I] and comes out from a direct application of the 
fluctuation-dissipation theorem. Chandler [Z] showed clearly how to use that  formal- 
ism in conjunction with molecular dynamics (MD) and also discussed the connection 
of this formalism with the transition state theory. I t  must be said that equivalent MD 
techniques to evaluate rate constants have been used previously by Bennett [3] for 
the study of defects migration in solids. The reaction coordinate, one of the essential 
ingredients of the reactive flux correlation function formalism, is in general a function 
of the full configuration space of the system. Its instantaneous value gives a micro- 
scopic description of the phenomenon or ‘reaction’ under study (the jump process 
in our case). Bennett [3] discussed the general properties that a reaction coordinate 
must satisfy. He also defined a suitable reaction coordinate for the vacancy-atom 
interchange process description: by choosing a diffusing atom among the neighbours 
of the vacancy, it measures the mutual ‘distance’ between the atom and the vacancy. 
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In performing our calculations we have found that such a definition of the reaction 
coordinate is a rather poor one. In fact the values that this reaction coordinate can 
assume do not identify uniquely the position of the system within one of the two r e  
gions of configuration space between which the transition process that we are studying 
takes place. This ambiguity is eliminated if each atom (except the diffusing one) is 
localized around its equilibrium site in some way. The aim of this paper is to re- 
analyse the problem of the evaluation of rate constants by molecular dynamics of a 
particular hopping process in a model crystal viewed as an application of Chandler’s 
theory of activated processes. We use computational techniques for the free energy 
part of the rate constant that  are different from those usually applied to activated 
processes calculations (see, for example, Bennett [3], Rebertus et al [4] and Gillan et 
al [5]). More precisely we use a method previously introduced by Carter el al [6] and 
another one [7,8] that  in general should be computationally equivalent. 

The application of these methods allows us to determine the rate constants with 
a high numerical precision (we used the same system as Bennett [3] to compare our 
results) and without the ambiguity involved in the definition of the reaction coordinate. 
This ambiguity disappears if there is an external field that keeps each atom (except 
the jumping one) localized. The easiest choice for this field is an harmonic spring that 
keeps each atom around its equilibrium site. The final results must be extrapolated 
to a field value of zero. 

The outline of this paper is as follows: section 2 discusses the definition of the re- 
action coordinate and the reactive flux correlation formalism. In section 3 we describe 
the techniques in  which an holonomic constraint on the reaction coordinate plays a 
central role. In section 4 we discuss the results for vacancy jump rate constant in a 
face-centred cubic (FCC) Lennard-Jones (LJ) system representing Argon at 60 K and 
80 K and we make some concluding remarks. 
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2. Theoretical ideas 

2.1. The reaction coordinate 

We are considering the transition of a superimposed vacancy in a perfect crystal 
between two nearby sites. More precisely, the ‘reaction’ we are considering is the posi- 
tion interchange of a vacancy with a well-defined atom occupying a nearest-neighbour 
vacant site. A reaction coordinate is a parameter that allows one to locate the in- 
stantaneous state of the reaction. Each state corresponds to a well-defined region of 
the configuration space. A reaction coordinate is satisfactory if’it has well-separated 
values when the system is in one of the stable states (two in our case) and assumes 
intermediate values when the system jumps between the stable states. In order to 
obtain a suitable identification of the two stable regions in configuration space (say 
A and B) and the transition state betwcen them, a reaction coordinate must be a 
continuous function of the atomic coordinates, < = E(.) [3]. We will consider that 
takes a value near EA if the system is in  region A and a value cB > SA if the system is 
in the region B. If we define W(<,) - W(tl) as the reversible work done by external 
forces to bring the reaction coordinate from cl to &, W(c)  will have a shape with two 
minima located at  5 = cA,CB (stable states), separated by a relative maximum at the 
transition state 5‘. If the height of the free energy barrier separating the stable and 
transition states is larger than few kBT, then the reaction will be a rare event. 
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We are considering the atom-vacancy interchange in a FCC lattice. Our model is 
made by N points of mass m and with coordinates {r} = (r l , .  . . , rN). The reaction 
coordinate we need to define must depend on the distance between the instantaneous 
positions of the atom and the vacancy. The latter is determined by the instantaneous 
position of its nearest-neighbour atoms. A reasonable reaction coordinate used in 
previous works [3,5] is 

E(.) = [rl - i(r2 + r3 + r4 + r5)] .j’ (1) 

where j is the unit vector in the jump direction (110) of the crystal a t  T = 0 (see 
figure 1). Atom 1 is the jumper and atoms 2, 3, 4 and 5 define a ‘gate’ through 
which atom 1 must pass to reach the vacant site. In a perfect FCC crystal these atoms 
lie on a plane orthogonal to the vector joining atom 1 and the vacancy. If atoms 
2, .  . . , 5  oscillate around their perfect crystal positions, values of ( near zero identify 
the transition region. 

Figure 1. Geometry of the system around 
the vacant site (quam). The jumping atom 
is atom 1. Its distance to the centre of mass 
of atom 2, 3, 4 and 5 defines the reaction 
coordinate. The last can be seen as a way 
to measure the position of the jumping atom 
with respect to the two sites accessible to it. 

In principle every nearest-neighbour atom of the vacant site (12 in a FCC crystal) 
is equally likely to jump in it. But we are focusing our attention on atom 1. Let us 
suppose that we can prevent in some ‘artificial’ way the other 11 rare events possible 
in our system. If we observe the behaviour in time of the reaction coordinate, it will be 
oscillating around one of the two possible symmetrical equilibrium values FA = -a12 
or &, = a/Z (where a is the nearest-neighbours’ distance in the perfect crystal). On a 
timescale much longer than that characterizing the vibrational motion of the atoms, 
( ( t )  will show a few fast transitions from state A to state B. We remark now, and we 
will discuss this particular issue later, that a reaction coordinate like (1) is meaningful 
only if it is based on the assumption that each atom except atom 1 is around its initial 
site. (We are not speaking of Wigner-Seitz cells because the equilibrium positions of 
the defective crystal are slightly different from those of the perfect crystal, and when 
the system is near the transition state a serious deformation of the lattice may occur.) 

2.2. The reactive-flux correlation function formalism 

If the timescale inherent to the activated process is well separated from all the others 
characterizing the microscopic dynamics, the rate constants for our reaction A e B 
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(the two rate constant are equal for symmetry reasons) is given by the apparent plateau 
value of the reactive flux correlation function defined as 
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(2) 
1 

k(i) = -(i(O) W O )  - E t )  Q ( E ( t )  - E t ) )  . 
(0.4) 

Here i(t) is the velocity of the reaction coordinate, O ( E ( t )  - Et) is the characteristic 
function for stable state B and (0,) = (e($ - [)) is the fraction of time that the 
system spends in the stable state A. k ( t )  is, within constant factors, the flux of the 
reaction coordinate through the transition state for trajectories that are on the tran- 
sition state at the beginning and for which, at later time t ,  E ( t )  > tt. This correlation 
function is characterized by two relaxation times. The shorter, rvib, is connected 
with the fast relaxation of the system from the initial transition state to one of the 
two stable states. The other, rrxn, is the decorrelation time of the two observable 
i ( O ) S ( E ( O )  - E t )  and @(<( t )  - E t )  or equivalently is that during which the system loses 
memory of the initial state. 

Equation (2) is the average ((. . .)) of the product ofobservables at different times 
i ( 0 )  S(E(0)  -$) and O ( < ( t )  - E t ) ,  over the canonical probability density e-oH, where 
H ( T , ~ )  is the Hamiltonian of the system. It can also be seen as the average of 
E(0) O(E(t) - E t )  over the joint probability density e-pH S ( E ( 0 )  -Et). The average in 
the numerator of equation (2) divided by the probability density of 5 at E' gives the 
average, conditioned a t  .$t, of i ( 0 )  O ( E ( t )  - Et). 

In reference [6] it is shown that the average conditioned at 5' of an observable 
A(T) can be obtained as a weighted average of A over a dynamics with the constraint 

= imposed, i.e. 

(3) 
( A ( T ) ~ ( < ( T )  - E ' ) )  - ~ ~ z ~ " ~ z A ( " ) ) p  

( W P )  - E t ) )  (IZl-l/9p 
.. . 

Here (, ..)e+ represent averages taken over the canonical probability density for a 
system constrained at the hypersurface E(.) = E t .  The weight 1Z1-'/' (where 
1.2 = la(/a~,[~/m) removes the bias generated by the constraint on the dynamics 
of the system. The quantity (6(( -Et)) = P(E = Et) is the probability density to 
observe the reaction coordinate at the transition state. In dynamical terms the left 
hand side term of (3) can be viewed as an average over a trajectory in the configura- 
tion space in which only points with E ( T )  = E2 contribute, while the right hand term 
side is a ratio of averages over trajectories in which the holonomic constraint = Et 
is imposed (configurational 'blue moon ensemble' of Carter et ~l [6]). 

An analogous relation [SI can be used to evaluate conditional time correlation 
functions between an observable A at t = 0 and another E at a later time t using 
initial conditions taken from a trajectory constrained at <(T) = <t :  

(4) 
(A(O)E(2)6(E(O) - Et)) (IZI-"*A(O)B(t))~,,, ~~ ~~~ 

~~ ~ 
- - 

( 4 3 7 )  - E t ) )  (I Zl 

where now (,  . . )E+,M means that in evaluating the correlation function, the constraint 
has been imposed only to sample the initial configuration, while the momenta are 
extracted from a maxwellian distribution and the dynamical evolution of the system 
is  unconstrained. 



Vacancy migration rates by molecular dynamics with constrcaints 2177 

Equation (2) can then be written as 

Classically, for .t -+ Ot , k(t) becomes [6] 

Here, kTsT is the transition state theory approximat.ion to the rate constant. Within 
this theory it is assumed that  all trajectories passing over the transition state with 
[ > 0 end up in the region B and remain there for a time much longer than T ~ ~ ~ .  

Equation (5) can be compared with the more familiar way of writing k ( t ) :  

, k(t) = k T S T K ( t )  (7) 

where r(t) is the transmission coefficient. The plateau value of .(t), attained for 
rvib < t < qXn, represents the dynamical correction to transition state theory due to 
the possibility of recrossings. 

3. Techniques for the probability density of the transition state 

We are studying rare processes. This means that a bruteforce calculation of P(E = Et) 
by MD requires very long time trajectories (much longer than r,,). Special techniques 
have been developed to evaluate quantities like P(E = [i). The common idea of all 
MD techniques is to force artificially the sampling of [ in the regions of phase space 
that would rarely be visited by a normal trajectory. Of course at the end one must be 
able to remove from the results the bias introduced in the dynamics. This bias can be 
an external and continuous potential, like in the MD version of the umbrella sampling 
method [91. In this work we calculated the probability density of the transition state 
in two ways, both involving the use of a [-constrained dynamics. 

The probability density to find the system at any point of configuration space 
compatible with a prescribed value El of < ( T )  is 

P([ =tl)  = (6(<(r) - 11)) K Ce-pw(cL) (8) 

where p = l/k,T, (. ,), as usual, is the canonical ensemble average and W(<) is the 
potential of mean force associated with the reaction coordinate. The constant C is 
determined by the normalization condition on P ( [ ) .  

The difference W(c2) - W(<,) is the reversible work .needed to bring the system 
from some reference value El of [ to F z .  The difference of the potential of mean force 
is given by (Tobias and Brooks [7], Paci et  al [SI) 
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In deriving equation (9) we must define a set of generalized coordinates U = (t, q) 
with q = (q1,q2,. . . , q 3 N - l )  and IJI = lar/dul the Jacobian of the canonical trans- 
formation { T )  Q { U } .  In passing from the first to the second equality in equation (9) 
we have used equation (3). Then, instead of evaluating a conditional average over a 
free trajectory, we evaluate an average over a constrained trajectory. For each point 
of these trajectories AV = V’(&,q(r ) ) -V’(c1 ,  q (r ) )  2 % 2 ( r ) - V e , ( ~ ) .  The quantity 
V’(u) is the potential energy of the system expressed in terms of generalized coor- 
dinates { U )  and L<%(r) and IJe,I are the values of V and /JI at a point that is the 
projection on the hypersurface ( ( r )  = t2 of a given point on the trajectory. The 
quantity Vc, ( r )  is the value of V corresponding to the the hypersurface E(.) = C l .  To 
evaluate the expression on the right hand side of equation (9) a constant-temperature 
constrained molecular dynamics can be carried out using standard methods [10-12]. 
At each time step the quantities I$,(T) and IJc,l must be calculated as described 
above. 

From the definition (8) of the potential of mean force, one can also define the mean 
force as 

E Paci and G Ciccotti 

where again we used equation (3). Equation (9) is valid for any pair of values &, 
E z .  However if 8 is far from &, the factor ,-pa’’ can be vanishingly small and the 
sampling needed to estimate the expectation value will be difficult. Thus, equation (9) 
can only be used to compute the difference between the potential of mean force cor- 
responding to two nearby values of the reaction coordinate E .  Equation (10) gives for 
each value of the absolute value of the mean force acting on [. The potential of 
mean force can be obtained by integrating the force function. To do this, the force 
must be known on a set of < closely spaced values. If we take cl = < and c2 = -+ 8c 
in (9) and = in ( lo) ,  for S[ - 0 it is straightforward that (9) and (10) yield the 
same information about E’(<). 

4. Results and discussion 

We have already pointed out that  the reaction coordinate (1) is meaningful if only one 
atom is allowed to jump, while all the others oscillate around their equilibrium position. 
Nowever it can happen that  another atom may jump in the vacant site instead of the 
chosen one. In previous studies this feature has probably been underestimated. I t  can 
be easily understood that the reaction coordinate (1) can fail to visualize the path of 
our reaction. In fact its value changing from -a12 to a12 represents the motion of 
atom 1 between its initial site and the vacancy only if none of the other 11 nearest 
neighbours of the vacancy jumps on it. Otherwise the values taken by ( will no longer 
represent the relative position of atom 1 and the vacancy. Near melting temperature 
it is not very unlikely that another atom will jump into the vacancy (or in one of the 
two half-vacancies) even during a ‘short’ <-constrained simulation. 
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Our idea here is to introduce an external field that localizes atoms around their 
equilibrium positions. Final results will be calculated by extrapolating to zero field. 
We have added to the true Hamiltonian 

where v(r)  is the pair LJ potential, an ‘artificial’ harmonic potential term given by 

N 

(11) V‘(rz,  . . .  , T ~ ; x )  = x - - - ~ I T ~  I(,,, -r;l2 
2 i=2 

where K,,,, is of the order of magnitude of the spring constant of an harmonic crystal 
with mean square displacement of atoms comparable to that of the crystal under study, 
and {rp} are the equilibrium positions of the atoms in the crystal. A is a parameter 
such that for X = 0 we recover the original system. For X > 0 we have a system similar 
to the original one but in which fluctuations that can lead an atom other than atom 1 
to jump are prevented. 

Intuitively, the positions {rp} should be those of the crystal relaxed in presence of 
the vacancy. However by applying (9) and (lo), we evaluate the mean value of certain 
observables while the reaction coordinate is constrained a t  some value. The relaxed 
configuration of the crystal is strongly dependent on the value of this constraint. 

It is intuitive that if the {rp} are fixed and are not dependent on the constrained 
value of E at which the dynamics is evolved, then when we measure constrained aver- 
ages for values of s near the transition state these will he strongly A-dependent. The 
extrapolation for A = 0 would then be hard. The transition state probability density 
evaluated in this way goes quickly to zero for X > 0. This can be understood if we 
consider that although the springs have a weak influence on the ‘typical’ oscillatory 
dynamies of the crystal they hinder the rare fluctuations that can carry atom 1 far 
from both equilibrium sites accessible to  it. 

We therefore use positions {v:} that are obtained by relaxing the system with a 
constraint over f .  The procedure to extrapolate correctly using [-dependent relaxed 
{r:}  is not straightforward. In fact i t  is clear that using (-dependent relaxed values 
for {rp} we cannot compute W((;X). The reason is that for different values of the 
constraint < we have systems with different Hamiltonians (IT:} are functions of <) and 
then incompatible differences in equation (9) and forces in equation (10). To achieve 
consistency we have first of all to evaluate (9) and (IO) at each value of cl, for few 
values of A. Then we extrapolate those quantities for X = 0. Only after that can we 
sum up the differences of potential of mean force or integrate the force to  evaluate 
WO. 

4.1. The transition state theory rate constant 

With the linear reaction coordinate of equation (1) the transformation of coordinates 
needed to evaluate (9) and (10) is simply linear, so that the Jacobian determinant 
IJI = 4 is a constant. For this reason the term depending on IJI in the expression 
of the mean force (10) is zero. In fact the term d ln lJ l /d<  represents the apparent 
force that would arise from the non-inertial character of the E variable. In the same 
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way the ratio [JC,~/~Je,~ = 1 simplifies (9). In this particular case 121-''2 = 
is also a constant. 

Taking Fz - t1 = i6[ in equation (9) and performing a number of <-constrained 
simulations, varying the value of < by 26 at each simulation, the potential of mean 
force can be computed over the range of interest within an additive constant. From 
(10) the mean force on E can be directly computed and the potential is obtained by 
numerical integration. 

Our simulations were carried out on a system of 255 LJ particles disposed on a 
FCC array, namely 43 unit cells with a missing atom. The array is initially relaxed in 
presence of the constraint on the reaction coordinate. The best LJ parameters that  
reproduce Argon are U = 3.405 A and e/kB = 119.8 K, where kB is the Boltzmann 
constant. All the numbers we report are in reduced units u,c and m where the latter 
is the mass of an Argon atom (m = 66.9 x lo-'* 9). 

The simulation was carried by MD at fixed volume, temperature and number of 
particles (Nos6Hoover technique [lo, 111). Periodic boundary conditions were used, 
along with a cut-off of the potential at r = 2 . 5 ~ .  The constraint on the reaction coor- 
dinate were imposed using the SHAKE algorithm 1121. The equations of motion were 
integrated using the classical Verlet algorithm with a timestep ~ ~ ~~~ h = 0 . 0 0 5 u m  ~~ = 

We have calculated W(<)  and F ( < )  for 0 < < < O.9a. The first, along with 
P([), is symmetric with respect to f = 0 while F(E) is antisymmetric. We pushed the 
calculation of P(c) up to values of [ beyond the equilibrium position because it needed 
to be normalized. The calc.ulation was truncated at  E = 0 . 9 ~  where P(() is equal to 
10-'Ou-' for T = 0.505 c f k g  and 10-6u-' for T = 0.67 e lkB respectively. The value 
for the spring constant appearing in equation (11) was taken as K,,, = 400 c/uz for 
both temperatures. As described earlier in this section we calculated each average 
three times for three different values of A.  All relevant quantities were extrapolated 
for X = 0. The values of X used were 0.08, 0.24, 0.4 and 0.1, 0.4, 1 for the lower and 
the higher temperature respectively. Each average was computed over trajectories 
40000 timesteps long (plus 4000 of equilibration). Statistical errors on the measured 
quantities were estimated by evaluating the standard deviation on a set of 20 segments 
of trajectory each 2000 timesteps long. In figures 2 and 3 we report, respectively, the 
potential of mean force obtained from (9) and the mean force obtained from (10). 
In figure 4 we report the probability density of the reaction coordinate. Error bars 
on our entries are invisible within the scale of the figures reported. The results for 
P(6 = [t) are reported in table 2. The consistency of the two different methods used 
is evident. Also reported in table 2 are values of kTST obtained from equation (6), 
where P(c = t t )  is the mean of the two values reported previously. 
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1 0 4 4  S. 

Table 1. Temperature. density, nearnt-neighbours' distance, mean energy and pres- 
sure, in reduced units, for the two points of the phase diapam of the LJ crystal under 
investigation. 

T P (I < E >  < P >  
I_. 

0.505 1.0026 1.1215 -6.914 -0.55 
0.570 0.9688 1.1344 -6.288 -0.34 
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Table 2. Probability density (in units of U-') of E = (t = 0 using the &WO methods 
(see text) for the two points of the phase diagram for the LJ model crystd under 
investigation; kTST (in units of u a )  is evaluated from equation (6) using the 
mea0 of the two results for P ( <  = Et) ;  ~ ( t ' )  (adimcnsiod) is the the transmission 
ccefficient. 

T = 0.505 (2.48 f 0.17)10-' (2.72 O.ll)lO-' (1.63 f 0.15)lO-' 0.905 

T = 0.670 (4.20f0.14)10-3 (4.15&0.13)10-3 (3.04 i 0.Z'Z)10-3 0.875 

Figure 2. Potat id  of man force on E evaluated 
using equation (9). tion (10). 

Figure 3. Mean fom on Z evaluated using equs, 

4.2. The transmission coeficienl 

From the definition (7), and using (2) and (6) the transmission coefficient is given by 

the corresponding result with the simplification implied in the linearity of the reaction 
coordinate being 

~ ( t )  = m ( i ( o ) w ( t )  - P ) ) ~ + , ,  . (13) 

~ ( i )  has been evaluated by MD as an average over a set of trajectories that ,  initially 
lying on the hypersurface F ( T )  = @, are followed in their unconstrained dynamical 
evolution. The initial configurations for the trajectories have been collected by ex- 
tracting a configuration every 500 timesteps from a trajectory constrained at [ = [' 
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Figure 4. Probability density of E 

1 F!?), , , , , , , , , , , , , , , , , , , , 

0.98 - 

0.96 - 

T=0.505 

. .- . . -. *. . _ _  -. 1 T=0.67 

-.-., J -..-.-. 0.88 - 

o'86' 0 ' ' 100  ' 200 

Figure 5. Transmission coefficient. 

300 400 t 5:; . 

and 200 000 timesteps long. Initial velocities for these trajectories have been extracted 
from a Rlaxwellian distribution. Such trajectories have been followed for a time long 
enough to observe the plateau for n(t) (figure 5). At the lowest temperature the 
plateau is reached after about 150 timesteps; The value of I( on the plateau is about 
0.9. It  means that almost every time that a trajectory coming from one stable region 
intersects the transition state with positive velocity, we have a successful transition. 
At the highest temperature (that is indeed near the melting temperature for Argon) 
the plateau value of I( is slightly lower than in the previous case. Anyway, although 
it is a well-established fact [3,14], we remark that  transition state theory is rather ac- 
curate in this particular case. The exact values found for the transmission coefficient 
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are reported in table 2. 
We also have to say that this way of evaluating the transmission coefficient is 

completely equivalent t o  that previously used by Gillan ct d [ 5 ]  although the complete 
justification of the method in the general case was given by Carter e t  ai [SI. 

4.3. Concluding remarks 

In table 3 our values of the rate constant k are compared with those obtained by 
Bennett [3] and by De Lorenzi and Jacucci [13]. The results of Bennett were obtained 
with an equivalent method, namely MD simulation without any kind of approxima- 
tion but using different techniques to accelerate the frequency of jumps. I t  can be 
noticed that the uncertainty of his results is much greater than that obtained by our 
method. The results of De Lorenzi and Jacucci were obtained by a quasiharmonic 
latticedynamics calculation. They compared their results with those of Bennett, con- 
cluding that lattice dynamics underestimates the jump rate in a systematic way. A 
comparison of our results with those obtained by De Lorenzi and Jacucci shows that 
their systematic underestimation is, in reality, much less relevant. Moreover it can 
be seen that latticedynamics results are very good even near the melting point, so 
that it is possible to state that the effects of anharmonicity on vacancy diffusion rate 
constant are not very relevant. 

Table 3. Logarithm of the rate constant (in unim of O J ~ )  compared with the 
results of Bennett [3] and De Lorenzi and Jacucci [13]. 

Ink =lnkTSTnft’l 

Bennett De Lorrenzi e t  a/  

T = 0.505 -8.822f 0.092 -7.5 f 1.0 -9.2 

T = 0.670 -5.g29i 0.074 -5.0 i 0.5 -6.1 

If one assumes that the only mechanism that makes diffusion in crystals possible is 
the position interchange between an isolated vacancy and one of the nearest-neighbour 
atoms, the diffusion coefficient is simply D = ( n / N ) ( z / 6 )  k a’. In this relation ( n / N )  
is the concentration of vacancies, z is the coordination number (12 in a FCC crystal), a 
is the nearest neighbours’ distance and k the rate constant that we calculated above. 

oints of the phase diagram of Argon in our study, we have D = 
1.1 x 10-9u& = 5.9 x cm2 s-’ a t  T = 60 E( and D = 1.44 x 10-su@ = 
7.7 x cm2 s-l a t  T = 80 K. We used the values of Squire and Hoover [15] for 
the vacancy concentration. Experimental values of these quantities are affected by 
important errors. We can quote the result of Berne e t  al [16] who, for a temperature 
around 80 K, found D = 2?; x lo-’ cm2 s-’. This value is in agreement with ours. 
Moreover our results are sure to be an underestimate of the real diffusion coefficient 
because only one mechanism contributing to diffusion is taken in account. 

Also, other diffusive mechanism like divacancy motion or interstitial jumps are 
often activated processes, at least a t  temperatures well below the melting point. Their 
contribution to the diffusion coefficient can be computed by means of the reactive flux 
formalism if one is able to define a suitable reaction coordinate. 

For the two 
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